Технические характеристики используемых масляных охладителей
Эффективная работа подвижной техники и стационарного гидравлического оборудования во многом зависит от поддержания оптимальных температурных условий для обеспечения стабильности работы гидравлического привода. По мнению экспертов, перегрев является второй наиболее распространенной проблемой в гидравлическом оборудовании.
Во время рабочего процесса рабочая жидкость не может быть естественным образом охлаждена, что требует использования теплообменников, функция которых заключается в том, чтобы точно поддерживать температуру рабочего тела в оптимальных пределах.
Причины повышения температуры рабочей жидкости.
Нагрев рабочей жидкости, как правило, указывает на недостаточную эффективность системы, поэтому происходит преобразование части входной мощности в тепло.
Во время работы системы между рабочей жидкостью и компонентами гидравлического привода возникают силы трения, приводящие к увеличению температуры жидкости. Повышение температуры снижает вязкость жидкости, что приводит к увеличению потерь.
Кроме того, когда рабочая жидкость нагревается до высокой температуры, ухудшаются условия смазки рабочих поверхностей, что может привести к серьезному износу деталей системы.
Температура рабочей жидкости выше 82 ° C может повредить уплотнения и привести к ухудшению качества масла. По этой причине рекомендуется избегать работы системы выше этой температуры. Однако также следует иметь в виду, что когда вязкость жидкости падает ниже оптимального значения для компонентов гидравлической системы, это показатель того, что температура слишком высокая. Это может происходить при условии температуры значительно ниже 82 ° C, в зависимости от вязкости жидкости.
Тепловая нагрузка
В гидравлических системах она равна общим потерям мощности из-за неэффективности. Общие потери могут быть представлены суммой мощности насоса, клапанов, труб, приводов. Если тепловая нагрузка от потери мощности больше, это может привести к перегреву системы. В зависимости от гидравлической системы установленная мощность охлаждения обычно составляет от 25 до 40% входной мощности.
Чтобы поддерживать стабильную температуру жидкости, мощность гидравлической системы в отношении охлаждения должна превышать ее тепловую нагрузку.
Для преодоления проблем повышения температуры в гидравлических системах обычно используются два метода. Один из них связан с уменьшением тепловой нагрузки, а другой с увеличением теплоотдачи.
Как правило, дополнительное тепло от гидравлической системы осуществляется через гидравлический резервуар. Увеличение объема поверхности теплопередачи может привести к задержке в процессе нагрева и не оказывает существенного влияния на тепловое состояние гидравлической системы.
Воздушные и водяные охладители
Воздушные или водяные теплообменники используются для охлаждения рабочей жидкости и поддержания ее температуры в гидравлических системах. Эти теплообменники поддерживают работу гидравлической системы, помогают увеличить срок службы рабочей жидкости и самой системы и снизить затраты на обслуживание и ремонт.
Одним из наиболее часто используемых являются воздушно-масляные охладители. Их основными компонентами являются теплообменник, вентилятор, защитный кожух и термостат. Охлажденная жидкость циркулирует через теплообменник, а охлаждение проходит через воздушный поток, создаваемый вентилятором. Для поддержания температуры в заданном диапазоне охладители обычно также оснащены термостатом.
Термостат также может выполнять функции управления теплообменником. Отличительной особенностью воздушно-масляных охладителей является теплообмен между внешней стенкой маслообменника и потоком воздуха. Поскольку эти охладители в основном используются для охлаждения гидравлических масел, они совместимы с широким спектром рабочих жидкостей, таких как эмульсии на водной основе, минеральные масла, водные гликоли.
Это одна из причин быть одним из наиболее широко используемых в гидравлических системах. Среди преимуществ воздухоохладителей – тот факт, что они могут быть оснащены для работы в агрессивных средах, а также для работы в тяжелых условиях эксплуатации.
Водяное охлаждение
В настоящее время существует два типа теплообменников для водяного охлаждения гидравлических систем – пластинчатых и трубчатых теплообменников. Конструкция трубчатых теплообменников включает цилиндрический корпус, в котором расположены пучки тонких трубок. Корпус обычно выполнен из стали, а внутренние трубки могут быть из стали, меди и других материалов. Охлажденная жидкость проходит через корпус снаружи внутренних трубок. Вода, используемая для охлаждения, проходит через внутренние трубки. Желательно, чтобы вода и масло проходили противотоком с целью достижения лучшего теплообмена.
Возможно, что конструкция теплообменника позволяет воде течь более одного раза, например, два или четыре раза. По мнению экспертов, ее повторный проход уменьшает количество требуемой воды, а также обеспечивает постепенное увеличение охлаждения.
Чтобы улучшить передачу тепла, внешняя трубка может быть снабжена направляющими пластинами, расстояние между которыми может изменяться. Меньшее расстояние между пластинами приводит к большей потере давления, но повышает эффективность теплопередачи. Другим решением, используемым для повышения эффективности теплообмена, является использование ребристых труб на стороне охлаждения.
Другим типом используемых теплообменников являются пластины. Они часто являются предпочтительным типом теплообменников из-за их компактности, что также определяет меньше занимаемого пространства, чем трубчатые теплообменники. Основным строительным блоком в этих теплообменниках являются тонкие металлические пластины, расположенные близко друг от друга. В большинстве случаев, чтобы увеличить поверхность теплообмена и добиться лучшего теплообмена между потоками, отдельные пластины профилируются.
В зависимости от того, как пластины соединены друг с другом, пластинчатые теплообменники можно условно разделить на две основные группы: съемные и неподвижные
Конструкция разборных пластинчатых теплообменников основана на наборе тонких пластин, размещенных между двумя пластинами. Как правило, передняя часть неподвижная, а задняя – подвижная. Две пластины зажимаются болтами. Используемые уплотнения также определяют направление потока внутри теплообменника. Благодаря хорошей герметизации пластин достигается надежная изоляция каналов в теплообменнике.
Среди преимуществ съемных пластинчатых теплообменников – их легкая разборка при необходимости очистки, а также возможность увеличения мощности теплообменника путем добавления дополнительных пластин.
Ограничение использования пластинчатых теплообменников такого типа обусловлено допустимой температурой подачи в зависимости от характеристик уплотнительных колец.
Комбинированные пластинчатые теплообменники
Конструкция комбинированных пластинчатых теплообменников, объединенных в компактную конструкцию, обеспечивает их оптимальную тепловую эффективность и надежность. Этот тип теплообменников называют неразборным, так как все плиты соединены вместе с помощью высокотемпературной пайки. Целью является достижение большей устойчивости к теплообмену при более высоких давлениях и температурах и достижение относительно низкой стоимости устройства.
Высокотемпературная сварка пластин устраняет необходимость в уплотнениях. Это позволяет работать при высоких давлениях и температурах без затрат на техническое обслуживание и утечку жидкости.
Основным недостатком сварных пластинчатых теплообменников является их сложная очистка из-за их неспособности к демонтажу.
Одним из широко используемых материалов для изготовления теплообменников с неразъемными плитами является алюминий, который устойчив к коррозии и характеризуется хорошими теплообменными свойствами.
Пластинчатые теплообменники также могут быть изготовлены из нержавеющей стали или титана. Рекомендуется использовать титановые пластинчатые теплообменники при работе теплообменника в агрессивных средах. Как правило, толщина одной пластины находится в диапазоне от 0,1 до 5 мм, а расстояние между пластинами составляет от 5 до 10 мм.